• GMAT

    • TOEFL
    • IELTS
    • GRE
    • GMAT
    • 在线课堂
  • 首页
  • 练习
    我的练习
  • 模考
  • 题库
  • 提分课程
  • 备考资讯
  • 满分主讲
  • APP
  • 我的GMAT
    我的班课 我的1V1 练习记录 活动中心
登录

GMAT考满分·题库

收录题目9362道

按指定内容搜索

热门材料:
GWD PREP07 Test 1 OG12 PREP07 Test 2 PREP2012 OG15 OG16 OG17 PREP08 Test 1 PREP08 Test 2 GWD-TN24 Manhattan Magoosh OG18 OG18-数学分册 OG18-语文分册 GWD-TN24-NEW PREP-NEW OG17-语文分册 OG18-Diagnostic Test MSR TA GI TPA 数论 代数 应用题 几何 排列组合 KMFRC OG19 KMFSC OG19-语文分册 KMFCR KMFPS KMFDS 634 OG19-数学分册 OG20 OG20-语文分册 OG20-数学分册 Ready4 201993测试 20199931 2019931 llk93 音频解析 - OG20逻辑 音频解析 - OG20语法 数学51分真题带练团 精选官方700+新题训练 #OG12-19已排重 #OG20综合 #PREP07 Test1 #PREP07 Test2 #PREP2012 #PREP08 Test 1 #PREP08 Test 2 OG20综合-Verbal OG20综合-Quant #OG20语文分册 OG20分册-Verbal #OG18语文分册 #OG18数学分册 #OG19语文分册 #OG19数学分册 #OG19 #OG18 #OG17 #OG16 #OG15 #OG12 IR-OG17 IR-OG18 AWA-OG15 AWA-OG16 AWA-OG17 #300难题 DAY1练习码 DAY2练习码 DAY3练习码 DAY4练习码 OG20语法单科 300难题-SC 300难题-CR 300难题-RC 300难题-PS 300难题-DS 2.5阅读刷题营 2.6阅读刷题营 2.7阅读刷题营 3.4GMAT逻辑活动 OG21 模考带练机经题 OG21-PS OG21-SC OG21-CR 热搜题目精选 181215 190113 190124 190207 190215 190302 190310 190321 190407 190415 190603 191020 191031 191222 200301 还原机经选题: 数论&代数 还原机经选题: 文字题&几何 OG2022

搜索结果共1206条

来源 题目内容
Magoosh If a and b are positive integers, and %$$(2^{3})(3^{4})(5^{7}) = a^{3}b$$, how many different possible values of b are there?
Magoosh Given that the length of each side of a quadrilateral is a distinct integer and that the longest side is not greater than 7, how many different possible combinations of side lengths are there?
Magoosh How many positive integers less than 10,000 are such that the product of their digits is 210?
Magoosh If ABCD is a square with area 625, and CEFD is a rhombus with area 500, then the area of the shaded region is Note: Figure not drawn to scaleGMAT、gmat题库、gmat模考、gmat考满分
Magoosh In the x-y plane, point (p, q) is a $$\mathbf {lattice}$$ $$\mathbf {point}$$ if both p and q are integers. Circle C has a center at (–2, 1) and a radius of 6. Some points, such as the center (–2, 1), are inside the circle, but a point such as (4, 1) is $$\mathbf {on}$$ the circle but not $$\mathbf {in}$$ the circle. How many lattice points are in circle C?
Magoosh In the above diagram, the 16 points are in rows and columns, and are equally spaced in both the horizontal & vertical direction. How many triangles, of absolutely any shape, can be created from three points in this diagram? Different orientations (reflections, rotations, translations, etc.) count as different triangles.
  • ‹
  • 1
  • 2
  • ...
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • ›