• GMAT

    • TOEFL
    • IELTS
    • GRE
    • GMAT
    • 在线课堂
  • 首页
  • 练习
    我的练习
  • 模考
  • 题库
  • 提分课程
  • 备考资讯
  • 满分主讲
  • APP
  • 我的GMAT
    我的班课 我的1V1 练习记录 活动中心
登录

GMAT考满分·题库

搜索

收录题目9362道

搜索结果共378条

来源 题目内容
PREP07 Test 2 Is $$x^4+y^4>z^4$$ ?(1) $$x^2+y^2>z^2$$(2) x + y > z
Manhattan If z is an integer, is z even?(1) $$\frac{z}{2}$$ is even.(2) 3z is even.
OG18-定量推理 If x + y + z > 0, is z >1?(1) z > x + y + 1(2) x + y +1 < 0
OG19-定量推理 If $$x + y + z > 0$$, is $$z > 1$$ ? (1) $$z>x+y+1$$ (2) $$x + y+ 1 < 0$$
Ready4

If , which of the following could be the value of ?

191222 X,y,z are consecutive positive integers and x < y < z,is x+y+z divisible by 10?
1:x+z is divisible by 10
2:y is divisible by 10
If $$w=\frac{1+x\frac{y}{z^2}}{x+y}$$, $${x}=\frac{z}{2}$$, and $${y}={3}\frac{z}{4}$$,what is the value of w in terms of z?
If z is an integer, is $$\frac{z}{3}$$ an odd integer?1. z is a multiple of 3.2. z is a multiple of 9.a
PREP07 Test 1 If x >$${y}^{2}$$ >$${z}^{4}$$, which of the following statements could be true?I. $$x >{y}>{z}$$II. $$z >{y}>{x}$$III.$$x>{z}>{y}$$
Manhattan x, y, and z are consecutive integers, and x < y < z. What is the average of x, y, and z?(1) x = 11(2) The average of y and z is 12.5.
OG18 OG19 OG20 OG2022 If x, y, and z are positive numbers, what is the value of the average (arithmetic mean) of x and z?(1) x-y=y-z(2) $$x^{2}-y^{2}=z$$
模考带练机经题 If x, y, and z are three consecutive odd numbers, is one of x, y, z a multiple of 7? (1)x + y + z is a multiple of 7 (2)x*y*z is a multiple of 7
If$${(z-3)}^{2}=12$$ ,then 2z(z-6)=
300难题 If the product of the integers w, x,y, and z is 770,and if 1 < w < x < y < z, what is the value of w + z ?
190207 x+y=120, x+z=100. What is the value of x ? 1:x+y+z=160 2:y+z=100
190215 x,y,z are positive integers that are larger than 1. x+y+z=? 1:x-y-z=1 2:xyz=231
190113 If x, y, and z are positive integers, x+y+z=? (1)xyz=154 (2)x-y-z=2
PREP07 Test 1 If $$z^n=1$$, what is the value of z?(1)n is a nonzero integer.(2)$$z > 0$$
PREP07 Test 2 If x and z are integers, is at least one of them even?(1)x + z is odd.(2)x - z is odd.
If xyz $$\neq 0$$, is $$x(y+z) \ge 0$$ ?(1)|y+z| = |y|+|z|(2)|x+y| = |x|+|y|
  • ‹
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • ...
  • 18
  • 19
  • ›