190310
|
$$(x^2+2x+1)(x^2-2x+1)=x^4+1$$.x=?
|
181215
|
Is $$\frac{x^{2}}{4}$$ > x?
1:|x| ≥ x
2:x < 0
|
190113
|
What`s the circumference of the circle whose area is $$\frac{9π}{4}$$ ?
|
190302
|
Which quadrant does line y=2x+4 intersect parabola y=-$$x^{2}$$+3?
|
190415
|
f(x)=1-x+$$x^{2}$$-$$x^{3}$$+$$x^{4}$$-$$x^{5}$$.f(3)=?
|
|
which of the following must be equal to $$\mathbf{x}^{6}\mathbf{x}^{4}$$
|
|
Is |k| = 2 ?(1) $$k^{2}=4$$(2) k = |-2|
|
|
Which of the following is equal to $${5}^{17}\times{4}^{9}$$?
|
Magoosh
|
$$If 2^{2n} + 2^{2n} + 2^{2n} + 2^{2n} = 4^{24}$$, then n =
|
Magoosh
|
If$$ x^2 - y^2 = 12$$ and x - y = 4, then x =
|
Manhattan
|
If$$ [[x]] = x^{2} + 2x + 4$$, what is the value of [[3]]?
|
Manhattan
|
If $$x^{2} – 4x = 5$$, then one possible value of x – 4 =
|
Magoosh
|
If $$f(x) = x^{4} - 3x^{3}- 2x^{2} + 5x $$, then f(-1) =
|
Magoosh
|
If $$\frac{x}{3} + \frac{x}{4} + 15 = x$$, then x =
|
Magoosh
|
If $$\frac{1}{x} + \frac{1}{3} + \frac{1}{4} = 1$$, then x =
|
|
$${(5^{8}+1){(5^{4}+1)}{(5^{2}+1)}{(5^{2}-1)}}$$=
|
|
If r(r-4)=12 where r represents a positive integer, then $${(r-2)}^{2}+10=$$
|
|
Is b> 4?
1. $$2b^{2}=50$$
2. 3b-2 = -17
|
|
If x= 4, what is the value of $$-{5}({x}^{2})$$?
|
PREP07 Test 1
|
If $$(\frac{1}{5})^{m}(\frac{1}{4})^{18}=\frac{1}{2(10)^{35}}$$, then m =
|